

Mark Scheme (Results)

January 2018

Pearson Edexcel International Advanced Subsidiary Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code WST02_01_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M)
 marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

January 2018 WST02 STATISTICS 2 Mark Scheme

Question	Scheme	Marks
1.(a)	$1 - F(4) = 1 - \frac{1}{16}(4 - 1)^2 = \frac{7}{16}$	M1 A1
(b)	$[P(X > 3 2 < X < 4) =] \frac{F(4) - F(3)}{F(4) - F(2)} = \frac{\frac{9}{16} - \frac{4}{16}}{\frac{9}{16} - \frac{1}{16}} = \frac{5}{8}$	(2) M1 dM1 A1 (3)
(c)	$f(x) = \frac{d}{dx}F(x) = \frac{1}{8}(x-1)$	M1
	$E(X) = \int_{1}^{5} \frac{1}{8} x(x-1) dx$	dM1
	$E(X) = \left[\frac{1}{24}x^3 - \frac{1}{16}x^2\right]^5 = \left(\frac{5^3}{24} - \frac{5^2}{16}\right) - \left(\frac{1}{24} - \frac{1}{16}\right) = \frac{11}{3}$	dM1 A1
		(4) Total 9
	Notes	
(a)	M1 for writing or using $1 - F(4)$ A1 for $\frac{7}{16}$ oe (allow 0.4375 or 0.438)	
(b)	5	
(0)	1^{st} M1 for writing or using F(4) – F(3) (may be implied by $\frac{5}{16}$ or 0.3125)	
	2^{nd} dM1 (dep on 1^{st} M1) for a ratio of probabilities with F(4) – F(2) written or u	sed in the
	denominator (may be implied by $\frac{1}{2}$). Do not award 2^{nd} M1 if numerator > deno	
	A1 for $\frac{5}{8}$ or 0.625	
(c)	2^{nd} dM1 (dependent upon 1^{st} M1) for multiplying x 'f(x)' and integrating (at least	ast one x^n
	$\rightarrow x^{n+1}$) 3 rd dM1 (dependent upon 2 nd M1) for substitution in of correct limits.	
	May be implied by $\frac{175}{48} - \left(-\frac{1}{48}\right)$	
	A1 for $\frac{11}{3}$ or awrt 3.67	
		1

Question	Scheme			Marks		
2. (a)	$\frac{n^3}{(n+1)^3} = 0.729 \Rightarrow \frac{n}{n+1} = \sqrt[3]{0.729} \Rightarrow n = 9$			M1A1cso		
	$(n+1)^3 \qquad \qquad \dots $	n+1	2) — N			
(b)	D(T 24) 0.0	$n^2(1 - 0.0) \dots 2$				(2)
	P(T = 24) = 0.9 P(T = 30) = 0.9					M1
	P(T = 30) = 0.9 P(T = 36) = (1 - 1)					2.54
	F(I = 30) = (1 - 1)	-0.9)				M1
	T	[18]	24	30	36	A1 A1
	P(T=t)	[0.729]	0.243	0.027	0.001	
(c)	P(R=0) = P(T	= 18) + P(T = 36)	60 = 0.73			(4)
	P(R=6) = P(T	/	,			M1 A1
						(2)
			Notes			Total 8
(a)	M1 for a correc	t equation in n ,	n+1 and 0.7	29		
	A1 cso M1 mus	st be scored and	no errors seen			
	Alternative (ver	rification):				
	M1 for $\frac{9^3}{(9+1)^3}$	-=0.729				
	A1 cso for stati	ng n = 9 from co	orrect working			
(b)	1 st M1 for eithe	$n^2(1-n) \times 3$	or $p(1-p)^2 \times 3$			
	2^{nd} M1 for $(1-p)^3$ or use of $1 - P(T \neq 36)$ 1^{st} A1 for at least 1 correct probability					
	2 nd A1 dependent on both M marks. Must have t values of 24, 30 and 36					
	associated with correct probabilities. (Need not be in a table).					
(c)	M1 for correct	calculation for e	either $P(R = 0)$ o	P(R=6)		
	A1 both probabilities correct and associated with correct <i>r</i> values and no other					
	(non-zero) prob	oabilities				

Question	Scheme	Marks
3. (a)	$[f(d) =]\begin{cases} \frac{1}{5} & -2.5 \le d \le 2.5 \\ 0 & \text{otherwise} \end{cases}$	B1
	$\begin{bmatrix} If(d) = J \\ 0 \end{bmatrix}$ otherwise	B1
		(2)
(b)	$\sqrt{\frac{(2.5 - (-2.5))^2}{12}} = 1.4433$ awrt <u>1.44</u>	M1 A1 (2)
(c)	0	B1 (1)
(d)	$\left[\frac{1-(-1)}{5}\right] = \frac{2}{5}$	B1 (1)
(e)	$X \sim B(10, '0.4')$ $[P(X \ge 6) =]1 - P(X \le 5) = 1 - 0.8338 = 0.1662$ awrt <u>0.166</u>	M1 M1 A1 (3)
		Total 9
(2)	Notes	
(a)	1 st B1 for ½ (ignore range for the 1 st B1 mark) 2 nd B1 fully correct distribution, including ranges.	
	Condone use of other letters instead of <i>d</i>	
	Allow < or ≤	
(b)	M1 for a correct expression with square root	
(b)		
	A1 awrt 1.44 allow $\frac{5\sqrt{3}}{6}$ oe	
	For integration allow complete correct expression to score M1 e.g. $\sqrt{\int_{-2.5}^{2.5} \frac{1}{5} x^2 dx}$	
(e)	1^{st} M1 for writing or using binomial with 10 and 'their (d)' 2^{nd} M1 for writing or using $1 - P(X \le 5)$ A1 awrt 0.166	
	Alternative (for 'their(d)' > 0.5) If using $Y \sim B(10, 1 - \text{'their (d)'})$ 1^{st} M1 for writing or using binomial with 10 and 1 - 'their (d)' 2^{nd} M1 for writing or using $P(Y \le 4)$	

Question	Scheme	Marks
4.(a)		M1
	leading to $(1 - p) = 0.85$	M1
	p = 0.15 $n = 28$	A1 A1
		(4)
(b)	X~B(25, 0.35)	
(0)	E(X) = 8.75	B1
	$[P(X > 8.75) = P(X \ge 9) =]$	D 1
	$1 - P(X \le 8) = 1 - 0.4668 = 0.5332$ awrt <u>0.533</u>	M1 A1
		(3)
(c)	$H_0: p = 0.1$ $H_1: p < 0.1$	B1
	<i>Y</i> ~B(40, 0.1)	
	$P(Y \le 1) = 0.080473$	M1
	Do not reject H ₀ / Not significant	dM1
	The <u>proportion</u> of customers buying more than 2 bags of sweets is <u>not less</u>	
	than 10%/not less than the shop's claim	A1cso
	or	
	The shop's claim is not rejected	(4)
		(4) Total 11
	Notes	Total 11
(a)	1 st M1 for correct expressions for mean and variance	
(u)	2^{nd} M1 for attempting to solve simultaneously by eliminating n or p	
	$1^{\text{st}} \text{ A1 for } p = 0.15$	
	$2^{\text{nd}} \text{ A1 for } n = 28$	
(b)		1 '1'4
	M1 for using $1 - P(X \le 8)$ with binomial (25, 0.35) (allow ft for a correct probabilistatement consistent with their $E(X)$ with binomial (25, 0.35))	Dility
	statement consistent with their $E(X)$ with officinial (23, 0.33))	
(c)	B1 both hypotheses correct (must use p or π)	
(-)	Transfer of the control of the contr	I
	1^{st} M1 for awrt 0.0805 or for stating critical region is $Y = 0$ from B(40, 0.1)	
	and as a company of the company of t	
	2 nd dM1 Dependent on previous M being awarded. A correct statement (do not	allow if
	there are contradicting non-contextual statements).	
	This mark may be implied by a correct contextual statement.	
	Alcso A correct contextual statement. All previous marks must be awarded for	this mark
	to be awarded.	
	Must include proportion/number/percentage/probability (condone rate) oe and 1	10%/shop's
	claim	
	or	
	The shop's claim is not rejected. Allow The shop's claim is supported/accepted	
L		

Question	Scheme	Marks
5. (a)	[X~Po(10)]	B1
	$[P(X > 12) = 1 - P(X \le 12) = 1 - 0.7916] = 0.2084$ awrt <u>0.208</u>	(1)
(b)	$[P(X > k) \ge 2 \times \text{`}0.2084\text{'}]$	
	$P(X \le k) < 1 - 0.4168$ [=0.583]	M1
	$k = \underline{10}$	A1cao (2)
(c)	$W \sim \text{Po}(5)$	B1 (2)
	$[P(W=4)]^2 \left[= \left(\frac{e^{-5}5^4}{4!}\right)^2 = (0.4405 - 0.2650)^2 = \right] = 0.030788 \text{ awrt } \underline{0.0308}$	M1 A1 (3)
(d)		
(u)	$P((X_1 \ge 10 \cap X_2 \ge 10) \mid (Y = 21)) = \frac{e^{-10}10^{10}}{10!} \times \frac{e^{-10}10^{11}}{11!} + \frac{e^{-10}10^{11}}{11!} \times \frac{e^{-10}10^{10}}{10!}$	M1 M1
	$P((X_1 \ge 10 \cap X_2 \ge 10) \mid (Y = 21)) = \frac{10!}{e^{-20} 20^{21}}$	3.61
	21!	M1
	= 0.336376	
	Use of tables:	
	$\frac{2 \times (0.5830 - 0.4579)(0.6968 - 0.5830)}{e^{-20} 20^{21}} = 0.336537$ awrt <u>0.336/7</u>	A1 (4)
	21!	
(e)	$I \sim Po(40) \approx N(40, 40)$	B1 B1
	$P(I > 27) - P(Z > \frac{27.5 - 40}{})$	N#1 N#1
	$P(L > 27) = P\left(Z > \frac{27.5 - 40}{\sqrt{40}}\right)$ $P(Z > -1.98) = 0.9761$ awrt 0.976	M1 M1
	P(Z > -1.98) = 0.9761 <u>awrt 0.976</u>	A1
		(5) Total 15
	Notes	1011112
(b)	M1 for $P(X \le k) \le 1 - 2^{\circ}p^{\circ}$ or $P(X \le k + 1) \le 1 - 2^{\circ}p^{\circ}$	
	follow through their 'p' < 0.5 (condone = or \leq instead of < 1 – 2'p') A1 $k = 10$ implies the M mark	
(c)	B1 for writing or using Po(5)	
, ,	M1 for $[P(W=4)]^2$ or for either correct expression	
(d)	1^{st} M1 for use of Po(10) with $X = 10$ or $X = 11$	
(u)	May be implied by $[P(X = 10)] = [awrt 0.125]$ or $[P(X = 11)] = [awrt 0.114]$	
	2^{nd} M1 for correct expression for $2 \times P(X = 10) \times P(X = 11)$ from Po(10)	
	May be implied by awrt 0.0284 or 0.0285	
	3 rd M1 for a ratio of probabilities with correct denominator (awrt 0.0846) and num <denom< th=""><th></th></denom<>	
	A1 awrt 0.336 or awrt 0.337	
(.)	1 St D1 f - " D - (40) (1 - 1 1 - 1 - 1 - 2 nd D1)	
(e)	1 st B1 for Po(40) (may be implied by 2 nd B1) 2 nd B1 for writing or using normal distribution with mean and variance 40 (The	se values
	may be seen in the standardisation expression)	, 41400
	1^{st} M1 attempting continuity correction (27 ± 0.5)	
	2 nd M1 standardising using their mean and their standard deviation and 26.5/27/A1 awrt 0.976	/27.5
	AT AWIT U.27U	

Question	Scheme	Marks	
6. (a)	$X \sim B(80,0.6) \approx N(48,19.2)$	M1 A1	
	$P(X \ge n) < 0.05$ $P(X \le n-1) > 0.95$		
	$P\left(Z > \frac{(n-0.5)-48}{\sqrt{19.2}}\right) < 0.05 \qquad P\left(Z < \frac{((n-1)+0.5)-48}{\sqrt{19.2}}\right) > 0.95$	M1	
	$\frac{(n-0.5)-48}{\sqrt{19.2}} > 1.6449$	M1 B1	
	n > 55.7 n = 56	A1cao	
		(6)	
(b)	$[H_0: \lambda = 9 \qquad H_1: \lambda > 9]$ $[B \sim Po(9)]$		
	$P(B \le 14) = 0.9585 / P(B \ge 15) = 0.0415 (< 0.05)$	M1	
	$B \ge 15$	A1 (2)	
		(2)	
		Total 8	
	Notes		
(a)	1 st M1 for writing or using a normal approximation 1 st A1 correct mean and variance (may be implied by the standardisation expres 2 nd M1 for attempting a continuity correction $(n \pm 0.5)$ or $((n - 1) \pm 0.5)$ (allow or $n - 47.5$ or $n - 46.5$ as numerator in a standardisation attempt) 3 rd M1 for standardising n or $(n \pm 0.5)$ or $(n - 1)$ or $((n - 1) \pm 0.5)$ with their me their standard deviation and comparing to z -value, $ z > 1$ B1 for use of 1.6449 or better compatible with their standardisation A1 56 cao dependent upon all M marks (from correct working- can score A1 froz-value $1.64 \le z \le 1.65$)	n - 48.5 an and	
	NB: Use of binomial score 0 out of 6		
(b)	M1 for either $P(B \le 14) = 0.9585$ or $P(B \ge 15) = 0.0415$ (may be implied by correct CR) A1 allow use of any letter but must be a CR not a probability statement		

Question	Scheme	Marks	
7. (a)	$\begin{bmatrix} 3 & 4 \\ 1 & n^2 & 4 \end{bmatrix} + \int k(4 - n) dn = 1$	3.54	
	$\int_{1}^{3} \frac{1}{16} x^{2} dx + \int_{3}^{4} k(4 - x) dx = 1$	M1	
	$\begin{bmatrix} r^3 \end{bmatrix}^3 \begin{bmatrix} r^2 \end{bmatrix}^4$		
	$\left[\left[\frac{x^3}{48} \right]_{1}^{3} + \left[k(4x - \frac{x^2}{2}) \right]_{2}^{4} = 1$		
	$\left(\frac{27}{48} - \frac{1}{48}\right) + k\left((16 - 8) - (12 - \frac{9}{2})\right) = 1$	M1	
	$k = \frac{11}{12} **$	Alcso	
(a)	12	(3)	
(b)	Correct shape for $1 \le x \le 3$ Correct shape for $3 \le x \le 4$	B1 B1	
	Correct shape for 5 <u>-</u> x <u>-</u> 1	(2)	
(c)	[X=] 3	B1 (1)	
(d)	3 4	(1)	
(u)	$E(X^{2}) = \int_{16}^{3} \frac{1}{16} x^{4} dx + \int_{12}^{4} \frac{11}{12} (4x^{2} - x^{3}) dx$	M1	
	1 3	dM1	
	$E(X^{2}) = \left[\frac{1}{80}x^{5}\right]_{1}^{3} + \left[\frac{11}{12}\left(\frac{4}{3}x^{3} - \frac{1}{4}x^{4}\right)\right]_{3}^{4}$	divii	
	$Var(X) = \frac{5863}{720} - (\frac{25}{9})^2 = \frac{2767}{6480}, = 0.427$ awrt <u>0.427</u>	M1, A1	
(e)(i)	c = -1	B1cao (4)	
(ii)	F(4)=1	Diedo	
	$\frac{11}{12}(4(4) - \frac{1}{2}(4^2) + d) = 1$	M1	
	$d = -\frac{76}{11}$	A1cao	
		(3)	
(f)	$\frac{11}{12}(4x - \frac{1}{2}x^2 - \frac{76}{11}) = 0.75$		
	$11x^2 - 88x + 170 = 0$	M1	
	x = 3.26 only	A1	
		(2)	
	Notes	Total 15	
(a)	1 st M1 equating sum of two expressions for area to 1 (ignore limits)	<u>I</u>	
	2^{nd} M1 correct use of limits to obtain a linear equation in k		
(b)	A1 for $k = \frac{11}{12}$ with correct integration and no incorrect working seen		
	1^{st} B1 for positive quadratic starting above <i>x</i> -axis with correct curvature 2^{nd} B1 for line with negative gradient which starts above the quadratic finishing	on x-axis	
	with labels 1, 3 and 4 on x-axis Ignore sketch outside of range $1 \le x \le 4$		
(d)	1^{st} M1 attempt to find E(X ²) by multiplying f(x) by x^2 and attempt to integrate		
	2^{nd} dM1 (dep on 1 st M1) for correct integration with correct limits (condone ft on their k)		
	3^{rd} M1 for use of $Var(X) = E(X^2) - (\frac{25}{9})^2$		
(e)(ii)	A1 awrt 0.427 M1 use of F(4)=1 [or use of F(3) = $\frac{13}{24}$] (condone ft on their k)		
(C)(II)	A1 $-\frac{76}{11}$ or exact equivalent (isw after $-\frac{76}{11}$ oe seen)		
(f)	M1 for equating their third line to 0.75 (condone ft on their k)		
	A1 for 3.26 only		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom